Synthesis of symmetric and non-symmetric indolo[2,3-c]carbazole derivatives: preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazoles

Eric Desarbre ${ }^{a}$ and Jan Bergman ${ }^{*, a, b}$

${ }^{a}$ Department of Organic Chemistry, CNT, Novum Research Park, S-14157 Huddinge, Sweden
${ }^{b}$ Department of Organic Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Symmetric and non-symmetric indolo[2,3-c]carbazoles have been prepared from 3,3'-biindolyls 9a-d by two strategies; step by step, by thermal electrocyclic reaction, or directly. Indolo[2,3-c]pyrrolo-[3,4-a]carbazoles 28aa-db, a new class of indolopyrrolocarbazoles, have been obtained in a one step reaction from readily available precursors.

Introduction

The indolocarbazole family is composed of five possible isomeric compounds and possess a wide range of biological activities. Thus, staurosporine $\mathbf{1}^{1}$ (inhibits protein Kinase C) and rebeccamycin $\mathbf{2}^{2}$ (exhibits antibiotic and antitumor activities) certainly are the most well-known of the indolo [2,3-a]carbazole derivatives. Three general methods exist to prepare the $[2,3-a]$ framework; Fischer indolization, ${ }^{3,4}$ Diels-Alder reaction, ${ }^{5,7}$ or oxidative cyclization of bisindolylmaleimides. ${ }^{8-11}$ The latter method is the one most frequently used. Indolo[3,2-b]carbazole 3 has recently attracted considerable interest due to its affinity

to the TCDD receptor. ${ }^{12,13}$ However no generally applicable synthetic methods are available for these systems. ${ }^{14-18}$

The other indolocarbazoles 4 - have been scantily studied. This is probably due to the lack of connection with any sort of biological activities or natural compounds. Indolo[2,3b carbazole 4^{19} is sometimes obtained during the preparation of $\mathbf{3}$ and the synthesis of indolo[3,2-a]carbazole $\mathbf{5}$ has only been reported by Mann and Willcox. ${ }^{20}$

In the case of the indolo[$2,3-c$ carbazole $\mathbf{6}$, only the preparation of N, N^{\prime}-dimethylindolo[2,3-c]carbazole has been described from N, N^{\prime}-dimethyl- N, N^{\prime}-diphenyl-1,4-phenylenediamine by irradiation. ${ }^{21}$ Now, we have developed three general methods to prepare indolo[2,3-c]carbazoles $\mathbf{6}^{22}$ by C -ring construction from readily available $3,3^{\prime}$-biindolyl derivatives. ${ }^{23,24}$ Two routes could be expected as outlined in the retrosynthetic Scheme 1; step by step, which uses thermal electrocyclic reaction, or by direct synthesis.

6

Scheme 1

These two routes capitalize on $3,3^{\prime}$-biindolyl as a readily available starting material as it can be prepared by condensation of isatin 7 and indole 8 , followed by reduction with lithium aluminium hydride. Symmetric or non-symmetric 3, $\mathbf{3}^{\prime}$ biindolyl derivatives $9 \mathbf{a}-\mathbf{c}$ have been prepared according to ref. 23 or 24 (Scheme 2).

Results and discussion

Synthesis of indolo[2,3-c]carbazoles: step by step

Thermal electrocyclic reactions ${ }^{25}$ have previously been used to form aromatic rings during various preparations of carbazoles, ${ }^{26-29}$ carbolines ${ }^{30,31}$ or ellipticine ${ }^{32,33}$ derivatives. Only a few workers have described this type of strategy to obtain the indolocarbazole framework. Thus, Wallace and co-workers ${ }^{7}$ and Pindur et al. ${ }^{6}$ have prepared indolo[2,3-a]carbazole derivatives from $2,2^{\prime}$-biindolyl by irradiation or by Lewis acid

Scheme 2 Reagents and conditions: i, $\mathrm{Et}_{2} \mathrm{NH}$ (cat), EtOH ; ii, LiAlH_{4} or $\mathrm{NaBH}_{4}, \mathrm{BF}_{3}, \mathrm{Et}_{2} \mathrm{O}$, DME; iii dimethyl oxalate, $\mathrm{Bu}^{t} \mathrm{OK}$
catalysis. Marchesini and co-workers ${ }^{34}$ have performed a 6π-electrocyclisation to obtain 10b from 10a (Scheme 3).

Scheme 3 Reagents and conditions: i, HPK 125 W, $h v$

The first step of our approach was to prepare 2 -formyl-3, $3^{\prime}-$ biindolyls 11. By treating the appropriate $3,3^{\prime}$-biindolyl derivatives 9 a-d with N, N-dimethylchloromethaniminium chloride ${ }^{35}$ (1.3 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature; the desired compounds 11a-d were obtained in good yields (Scheme 4). The

Scheme 4 Reagents and conditions: i, $\mathrm{ClCH}=\mathrm{N}(\mathrm{Me})_{2}^{+} \mathrm{Cl}^{-}$(1.3 equiv.), MeCN , RT; ii, NaHCO_{3} sat.
structures of compounds 11b and 11c have been studied by 2D-NMR to establish the correct position of the formyl group on the 3, 3^{\prime}-biindolyl framework. No 2,2'-diformyl derivatives were observed as side-products and were not even formed on attempted formylation of 11a under forcing conditions. The electronic withdrawing effect of the formyl group in the 2 position exerts its lowering effect on the nucleophilic nature of the 2 '-position.

From 11a, many 2-substituted-3, 3^{\prime}-biindolyls could be prepared. Wittig or Horner-Emmons reactions led to compounds $\mathbf{1 2}$ or (E)-13a in 85% and 80% yield. The (Z) isomer of 13a was isolated in 10% yield as a side-product (Scheme 5). Similarly, 2-formyl-3, 3^{\prime}-biindolyls $9 \mathbf{9 b}, \mathbf{c}$ yielded α, β-ethylenic esters (E) $\mathbf{1 3 b}$ and (E)-13c in 95% yield each.

The aldehyde 11a led to the gem-diethyl ester 14 in 75% yield, by aldolisation in the presence of diethyl malonate in toluene at reflux with piperidine as catalyst or to the nitrovinyl derivative

16

14

Scheme 5 Reagents and conditions: i, $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}, \mathrm{K}_{2} \mathrm{CO}_{3}$, triglyme; ii, (EtO) ${ }_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, NaH , THF; iii diethylmalonate, piperidine (cat.), toluene; iv, $\mathrm{MeNO}_{2}, \mathrm{MeCO}_{2} \mathrm{NH}_{4} ;$ v, $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{HCl}, \mathrm{EtOH}$

13b

13c

15 in 81% yield by the classic Henry reaction. The ratio between the two isomeric oximes 16, obtained in 95% yield in ethanol at reflux in the presence of $\mathrm{NH}_{2} \mathrm{OH}$ and HCl was $1: 1$ (Scheme 5).

The construction of the C-ring was effected by heating the precursor 15 during 8 h at $190^{\circ} \mathrm{C}$ in $\mathrm{Ph}_{2} \mathrm{O}$ under an inert atmosphere which resulted in the formation of $\mathbf{1 7}$ in only 30% yield (Scheme 6). The reaction performed with Pd / C led to the

17
Scheme 6 Reagents and conditions: i, $\mathrm{Ph}_{2} \mathrm{O}, 190^{\circ} \mathrm{C}$
desired compound $\mathbf{1 7}$ in 28% yield as well. The low yield was due to a quick degradation of the compound observed during the reaction.

The stability of the N, N^{\prime}-dimethylindolo[2,3-c]carbazole 18 contrasts with its non-substituted analog 17. Henry aldolisation with the formyl compound 11d during 48 h gave compound 19^{21} in 20% yield, whereas the expected compound 18 was obtained in only 8% yield. A large amount (69%) of starting material was recovered. From 19, in $\mathrm{Ph}_{2} \mathrm{O}$ at $160^{\circ} \mathrm{C}, N, N^{\prime}-$ dimethylindolo[2,3-c]carbazole $\mathbf{1 8}^{\mathbf{2 1}}$ could be prepared in 58% yield (Scheme 7).

Other electrocyclisations have been executed under the same conditions $\left(\mathrm{Ph}_{2} \mathrm{O}\right.$ at $\left.190^{\circ} \mathrm{C}\right)$; either from (E)-13a-c to obtain

Scheme 7 Reagents and conditions: i, $\mathrm{MeNO}_{2}, \mathrm{MeCO}_{2} \mathrm{NH}_{4}$; ii, $\mathrm{Ph}_{2} \mathrm{O}$, $160^{\circ} \mathrm{C}$

Scheme 8 Reagents and conditions: i, $\mathrm{Ph}_{2} \mathrm{O}, 190^{\circ} \mathrm{C}$; ii, $\mathrm{KOH}, \mathrm{MeOH}$

Scheme 9 Reagents and conditions: i, $\mathrm{Ph}_{2} \mathrm{O}, 190^{\circ} \mathrm{C}$
indolocarbazoles 20a-c in respectable yields (30-78\%) (Scheme 8) or from any isomer of the oxime 16 which gave 2-cyano-3, 3^{\prime} biindolyl 22 (31 \%) and pyridodiindolyl 23 (51\%) (Scheme 9). During the formation of 20a, we have followed (Z)-13a on the mixture by TLC control. Attempts to cyclize $(E)-13 \mathbf{a}$ at lower temperatures (reflux in xylene or acetic acid, $110{ }^{\circ} \mathrm{C}$ in $\mathrm{Ph}_{2} \mathrm{O}$) failed or gave 20a in low yields (less than 5\%) and using a Lewis acid was unsuccessful. Saponification of 20a led to the parent acid 21 in 96% yield.

In connection with the studies of staurosporine and rebeccamycin derivatives, the direct synthesis of indolo[2,3-c]pyrrolo-[3,4-a]carbazoles has also been expected.

Indolo[2,3-c]pyrrolo[3,4-a] carbazoles: direct synthesis

In the $2,2^{\prime}$-biindolyl series, attempts to prepare directly indolo[2,3-a]carbazoles via Diels-Alder cycloaddition is fraught with difficulties and low yields. Michael addition products have been obtained but only traces of $1: 1$ cycloadducts have been identified. ${ }^{5,7}$ We have studied the behaviour of $3,3^{\prime}$ biindolyl in the presence of certain dienophiles. Thus, the 3,3'-biindolyl 9a, when heated in neat dimethyl acetylenedicarboxylate, gave directly the expected 1:1 adduct 24 in 75% yield (Scheme 10). Steric hindrance of the ester groups in 24 will

iii $\square \mathbf{2 4} \begin{aligned} & \mathrm{R}=\mathrm{Me} \\ & \mathrm{R}=\mathrm{H}\end{aligned}$

Scheme 10 Reagents and conditions: i, diethyl acetylenedicarboxylate, neat $210^{\circ} \mathrm{C}$; ii, ethyl propiolate, neat, $120^{\circ} \mathrm{C}$; iii, $\mathrm{MeOH}, \mathrm{KOH}$
prevent further attack of dimethyl acetylenedicarboxylate and no $2: 1$ adduct was formed. However, in the $2,2^{\prime}$-biindolyl series the adduct 26 is formed when the reactants are heated in

o-dichlorobenzene. ${ }^{5}$ Saponification of $\mathbf{2 4}$ led to the diacid $\mathbf{2 5}$ in 97% yield (Scheme 10). The monoester 20a was analogously obtained in 23% yield when $3,3^{\prime}$-biindolyl 9 a was heated in ethyl propiolate (Scheme 10).

The results outlined in Scheme 10 induced us to carry out this similar procedure in the presence of maleimide derivatives 27 to obtain the framework involved in rebeccamycin compounds. Unfortunately, attempted generation of a maleimide ring from the diacid $\mathbf{2 5}$ to lead to 28ac gave complex mixtures which were impossible to purify.

Nevertheless, heating of $\mathbf{9 a - c}$ in $\mathrm{Ph}_{2} \mathrm{O}$ at $200^{\circ} \mathrm{C}$ (condition A) in the presence of N-methyl- or N-phenyl-maleimide 27a-d resulted in the formation of the indolo[2,3-c]pyrrolo[3,4-a]carbazoles 28 indicated in Scheme 11, Table 1. The starting

Scheme 11 Reagents and conditions: conditions $\mathrm{A}, \mathrm{Ph}_{2} \mathrm{O}, 190^{\circ} \mathrm{C}$; Conditions B, AcOH, $100^{\circ} \mathrm{C}$
material 9a remained unchanged when maleic anhydride was used instead of an N-substituted maleimide.

Recently, treatment of 2,2'-biindolyl with maleimide 27 c in toluene in presence of TFA has been reported to yield the unnatural indolo[2,3-a]carbazole 29. ${ }^{36}$ In our case, at $100^{\circ} \mathrm{C}$ in acetic acid (condition B, Scheme 11), 3, 3^{\prime}-biindolyl 9a and maleimide derivative $\mathbf{2 7 b}$ did not give the expected compound

Table 1 Preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazoles 28aa-db

Entry	$\mathbf{2 8}$	R^{1}	$\mathrm{R}^{1^{\prime}}$	R^{5}	R^{7}	R	Conditions	Reaction time/h	Yield(\%)
1	$\mathbf{a a}$	H	H	H	H	Me	A	12	42
							B	36	12
44									
	$\mathbf{a b}$	H	H	H	H	$\mathrm{CH}_{2} \mathrm{Ph}$	A	24	69
3	$\mathbf{a c}$	H	H		H	H	H	B	5
4	$\mathbf{b b}$	H	H	Cl	Cl	$\mathrm{CH}_{2} \mathrm{Ph}$	A	24	55
5	$\mathbf{b c}$	H	H	Cl	Cl	H	B	36	63
6	$\mathbf{c b}$	H	Me	H	H	$\mathrm{CH}_{2} \mathrm{Ph}$	A	41	
7	$\mathbf{d b}$	Me	Me	H	H	$\mathrm{CH}_{2} \mathrm{Ph}$	A	12	56

29

30

30 but the indolocarbazole 28ab in 55\% yield. The indolocarbazoles 28aa,ac,bc could be similarly prepared. These results have further established that formal cycloaddition reactions are easier to control with $3,3^{\prime}$-biindolyls compared with $2,2^{\prime}-$ biindolyls.

Compound 24 was obtained in 55% yield when 9 a was heated in acetic acid at $100{ }^{\circ} \mathrm{C}$ in the presence of dimethyl acetylenedicarboxylate. The reaction, performed in the presence of maleic anhydride during 2 days, yielded compound 31 in 46% yield (Scheme 12).

Scheme 12 Reagents and conditions: i, maleic anhydride, AcOH , $100^{\circ} \mathrm{C}$

The mechanism of formation of $\mathbf{2 8}$ in these two conditions is not clear. Nevertheless, for protic as well as aprotic conditions, it is reasonable to assume that a Michael addition occurs at the 2-position on the 3,3'-biindolyl. In accord with this, diethyl azodicarboxylate (DEAD), a good dienophile for Diels-Alder reactions, has been heated in toluene at $110^{\circ} \mathrm{C}$ in the presence of $1,1^{\prime}$-dimethyl-3, 3^{\prime}-biindolyl 9d and the Michael adduct 32 has been isolated in 87% yield (Scheme 13). This fact probably

Scheme 13 Reagents and conditions: i, DEAD, toluene, $110^{\circ} \mathrm{C}$
eliminates the hypothesis of a $[4+2]$ cycloaddition mechanism for the aprotic conditions. However, in neither solvent, have any intermediates have been clearly isolated and the conditions of cyclization and aromatization of the C-ring have not been determined and are still under investigation.

Conclusions

A new class of indolocarbazoles have been prepared by two general methods; step by step via 2-formyl-3,3'-biindolyl or by direct synthesis to prepare symmetric and non-symmetric indolo[2,3-c]pyrrolo[3,4-a]carbazoles. Both routes, started with readily available $3,3^{\prime}$-biindolyl derivatives, led to different compounds in respectable yields. This easy access to indolo[2,3-c]carbazole derivatives will help us to look for any kind of structural or conformational similarities with known receptor ligands.

Experimental

Melting points were determined on a Reichert WME Kofler hot stage and are uncorrected. IR spectra were recorded on a Perkin-Elmer 1600 FTIR instrument. NMR spectra were obtained on a Varian UNITY plus (400 MHz) or on a Bruker AM400 (400 MHz) instrument. J Values are given in Hz. Mass spectra were obtained on a Finnigan MAT SSQ710 instrument with a direct inlet at 70 eV . The ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{2 8 b b}, \mathbf{b c}$ could not be recorded due to their low solubility.

3,3'-Biindolyl derivatives 9a-c

3,3'-Biindolyl derivative $9 \mathbf{9}-\mathbf{c}$ was prepared according to procedures reported in refs. 23 or 24 . Yields of $\mathbf{9 a - c}$ were calculated from starting indoles or isatins.

3,3'-Biindolyl 9a. Yield 61%; mp $>250^{\circ} \mathrm{C}$ (lit., ${ }^{24} \mathrm{mp} 285-$ $287^{\circ} \mathrm{C}$); IR and NMR spectra data were identical with previous publications.

5,7-Dichloro-3,3'-biindolyl 9b. Yield 31\%; mp $174-176^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3398,3081,1556,1454,1067,747$, 574; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.08(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), 7.33 ($1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{ArH}), 7.47$ ($1 \mathrm{H}, \mathrm{d}, J 7.3$, ArH), 7.657.78 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 11.26 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $11.80(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 108.0(\mathrm{~s}), 111.1$ (d), 111.6 (s), 116.7 (s), 117.9 (d), 119.0 (d), 119.1 (d), 120.3 (d), 121.3 (d), 122.6 (d), 123.4 (s), 124.7 (d), 125.8 (s), 128.3 (s), 131.8 (s), 136.3 (s).

1-Methyl-3,3'-biindolyl 9c. Yield 29\%; mp $138-141^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3421,3410,3046,1612,1456,1333,1231,742$, $736 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.04-7.25(4 \mathrm{H}, \mathrm{m}$, ArH), 7.44-7.50 (2 H, m, ArH), $7.66(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH}), 7.68$ (1 H, s, ArH), 7.79-7.85 (2 H, m, ArH), 11.18 (1 H, s, NH); $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 32.3$ (q), 108.9 (s), 109.3 (s), 109.6 (d), 111.5 (d), 118.7 (d), 118.8 (d), 119.5 (d), 119.7 (d), 121.1 (d), 121.2 (d), 121.7 (d), 125.8 (s), 126.2 (d), 126.3 (s), 136.3 (s), 136.6 (s).

1,1'-Dimethyl-3,3'-biindolyl 9d

1,1'-Dimethyl-3, 3^{\prime}-biindole $9 \mathbf{d}$ was prepared from 9 a according to a procedure reported in ref. 37 . Yield $65 \% ; \mathrm{mp} 185-187{ }^{\circ} \mathrm{C}$ (lit., ${ }^{38} \mathrm{mp} 186-188^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2922,2851,1466,1327$, 1241,$739 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.11(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), 7.22 ($1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.69$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.85(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 32.3$ (q), 108.5 (s), 109.7 (d), 118.8 (d), 119.7 (d), 121.3 (d), 126.1 (d), 136.6 (s).

3,3'-Biindolyl-2-carboxaldehyde derivatives 11a-d: general

 procedureTo a stirred suspension of $3,3^{\prime}$-biindolyl derivative $9 \mathbf{9 - d}$ (1 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml}), N, N$-dimethylchloromethaniminium chloride (1.3 mmol) was added at room temperature. After dissolution, a new precipitate soon appeared. The solvent was evaporated in vacuo after TLC control of the total disappearance of the starting material ($2-12 \mathrm{~h}$). Saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ was added and the aqueous phase was extracted with EtOAc $(3 \times 15 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo. The residue, chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, gave compound 11a-d as a yellow solid.

3,3'-Biindolyl-2-carboxaldehyde 11a. Yield 85%; mp 189$191{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.34 ; \mathrm{H}, 4.68 ; \mathrm{N}, 10.74 . \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C, $78.44 ; \mathrm{H}, 4.65 ; \mathrm{N}, 10.76 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3385,3278$, 2923, $1645,1612,748 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.12-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31(1 \mathrm{H}$, $\mathrm{t}, J 8.1, \mathrm{ArH}), 7.41-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.1$, ArH), $7.80(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.51(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9,12(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 9.92$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 105.9$ (s), 111.1 (d), 112.9 (d), 119.0 (d), 119.5 (d), 120.1 (d), 121.7 (d), 122.2 (s), 122.4 (d), 126.1 (d), 126.5 (s), 126.7 (d), 126.8 (s), 131.8 (s), 136.5 (s), 138.1 (s), 182.0 (d); $m / z 260$ ($\mathrm{M}^{+}, 100 \%$).
$5^{\prime}, 7^{\prime}$-Dichloro-3,3'-biindolyl-2-carboxaldehyde 11b. Yield 85%; mp 188- $190^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3422,3286,2849,1640$, 1613, 744; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.14(1 \mathrm{H}, \mathrm{t}, J 8.1$, ArH), 7.34-7.45 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.53(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{d}, J 8.1$, ArH), $7.90(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 9.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $\left.12.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 107.1(\mathrm{~s}), 113.0(\mathrm{~d}), 117.2(\mathrm{~s})$, 117.4 (d), 119.9 (s), 120.4 (d), 120.8 (s), 121.9 (d), 124.0 (s), 126.3 (s), 126.8 (d), 128.9 (d), 129.1 (s), 132.1 (s) 137.8 (s), 182.0 (d).

1'-Methyl-3,3'-biindolyl-2-carboxaldehyde 11c. Yield 95\%; $\mathrm{mp} 166-168^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3325,2925,1640,1612,740$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.07-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.27(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.51-7.59$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.68(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.74(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $9.86(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 11.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 32.6$ (q), 105.0 (s), 110.2 (d), 112.9 (d), 119.2 (d), 119.7 (d), 120.1 (d), 121.7 (s), 121.8 (d), 122.3 (d), 126.4 (s), 126.8 (d), 127.0 (s), 130.2 (d), 131.7 (s) 136.9 (s), 138.1 (s) 182.0 (d).

1,1'-Dimethyl-3,3'-biindolyl-2-carboxaldehyde 11d. Yield 80%; mp 172-174 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2925,2825,1643,1387$, $744 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.11$ $(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), $7.26(1 \mathrm{H}, \mathrm{t}, J 8.1$, ArH), 7.44-7.52 (2 H, m, ArH), 7.56 (1 H, d, J 7.3, ArH), 7.62$7.72(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 31.5$ (q), 32.6 (q), 104.5 (s), 110.2 (d), 110.9 (d), 119.1 (d), 119.7 (d), 120.4 (d), 121.8 (d), 122.3 (d), 124.1 (s), 125.4 (d), 127.2 (s), 127.2 (s), 130.4 (s), 130.5 (d), 136.8 (s), 139.6 (s), 183.0 (d).

2-Vinyl-3,3'-biindolyl 12

A solution of triglyme (2,5,8,11-tetraoxadodecane) (1 ml) containing aldehyde $11 \mathrm{a}(90 \mathrm{mg}, 0.34 \mathrm{mmol}$), methyltriphenylphosphonium bromide $(154 \mathrm{mg}, 0.43 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(72$ $\mathrm{mg}, 0.52 \mathrm{mmol}$) was heated during 4.5 h at $120^{\circ} \mathrm{C}$. After cooling, the solution was chromatographed on a silica gel column [$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum $\left.50: 50(\mathrm{v} / \mathrm{v})\right]$ affording $75 \mathrm{mg}(85 \%)$ of 12; mp 207-209 ${ }^{\circ} \mathrm{C}$ (dec.); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3398,2919,1602$, 1454,$741 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.22\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{H}_{\mathrm{eth}}\right), 5.52(1 \mathrm{H}, \mathrm{d}$, $\left.J 17.7, \mathrm{H}_{\mathrm{eth}}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J 11.3,17.7, \mathrm{H}_{\mathrm{eth}}\right), 7.10(1 \mathrm{H}, \mathrm{t}, J 8.0$, ArH), 7.15 (1 H, t, J 8.0, ArH), 7.20-7.32 (3 H, m, ArH), 7.40 $(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.46(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.57-7.66(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 8.29(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 109.6$ (s), 110.6 (d), 110.9 (t), 111.0 (s), 111.1 (d), 119.7 (d), 119.8 (d), 120.6 (d), 120.7 (d), 122.2 (d), 123.2 (d), 123.5 (d), 126.9 (d), 127.6 (s), 129.0 (s) 132.8 (s), 136.2 (s), 136.3 (s).

Ethyl 3-(3,3'-biindolyl-2-yl)propenoate derivatives 13a-c: general procedure
To a suspension of $\mathrm{NaH}(1.3 \mathrm{mmol})$ in dried THF $(10 \mathrm{ml})$
under an inert atmosphere was added at $0^{\circ} \mathrm{C}$ diethyl phosphonoethylacetate $(1.3 \mathrm{mmol})$. The NaH suspension disappeared and, after 5 min , a solution of THF (10 ml) containing $11 \mathbf{a}-\mathbf{c}(1 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$. The resulting solution was stirred during 15 min at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. The THF solution was quenched with water $(40 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent evaporated in vacuo. The residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ giving yellow compound $\mathbf{1 3 a} \mathbf{a}$.

Ethyl (E)-3-(3,3'-biindolyl-2-yl)propenoate 13a. Yield 80%; $\operatorname{mp} 232-234{ }^{\circ} \mathrm{C}$ (Found: C, 76.25; H, 5.55; N, 8.59. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.34 ; \mathrm{H}, 5.49 ; \mathrm{N}, 8.48 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3425$, 3304, 2978, 1684, 1625, 1193, 750; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.21(3 \mathrm{H}, \mathrm{t}$ br, $\left.\mathrm{CH}_{3}\right), 4.14\left(2 \mathrm{H}, \mathrm{q} \mathrm{br}, \mathrm{CH}_{2}\right), 6.59\left(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{H}_{\mathrm{eth}}\right), 6.95-$ $7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), 7.35-7.55 (5 H, m, ArH), $7.69\left(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{H}_{\text {eth }}\right), 11.48$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.64(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 14.1(\mathrm{q}), 59.7$ (t), 107.1 (s), 111.4 (d), 111.8 (d), 114.3 (d), 116.6 (s$), 119.1$ (d), 119.2 (d), 119.5 (d), 120.6 (d), 121.4 (d), 124.6 (d), 124.9 (d), 126.8 (s), 127.5 (s), 130.0 (s), 133.4 (d), 136.4 (s) 137.8 (s), 166.4 (s); $m / z 330\left(\mathrm{M}^{+}, 100 \%\right), 257(40 \%)$.

Ethyl (\boldsymbol{Z})-3-(3,3'-biindolyl-2-yl)propenoate 13a. Yield 10%; $\mathrm{mp} 226-228^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410$, 2975, 1690, 1620, 740; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CH}_{2}\right)$, $5.71\left(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{H}_{\mathrm{eth}}\right), 7.08(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArH}), 7.12(1 \mathrm{H}, \mathrm{d}$, $\left.J 12.8, \mathrm{H}_{\mathrm{eth}}\right), 7.15(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArH})$, 7.30-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.46-7.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.59(1 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{ArH}), 7.62(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.77$ (1 H, s, NH).

Ethyl (E)-3-(5', 7^{\prime}-dichloro-3,3'-biindolyl-2-yl)propenoate 13b. Yield 95%; mp 150-152 ${ }^{\circ} \mathrm{C}$ (Found: C, 63.28; H, 4.10; N, 7.14. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, ~ 63.17 ; \mathrm{H}, 4.04 ; \mathrm{N}, ~ 7.02 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3468,3313,2972,1693,1681,1610,1281,750 ;$ $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.22\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 4.15(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{CH}_{2}\right), 6.61\left(1 \mathrm{H}, \mathrm{d}, J 16.2, \mathrm{H}_{\mathrm{eth}}\right), 7.07(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.25-$ $7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{d}, J 7.3$, ArH), $7.46(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.55\left(1 \mathrm{H}, \mathrm{d}, J 16.2, \mathrm{H}_{\mathrm{eth}}\right), 7.69$ (1 H, d, J 2.6, ArH), $11.76(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 14.1(\mathrm{q}), 59.8(\mathrm{t}), 108.3(\mathrm{~s}), 111.6(\mathrm{~d}), 114.5(\mathrm{~s})$, 115.2 (d), 117.2 (s), 117.4 (d), 119.8 (d), 120.2 (d), 120.7 (d), 123.8 (s), 124.7 (d), 127.3 (s), 127.8 (d), 129.2 (s), 130.5 (s), 132.0 (s), 132.7 (d), 137.7 (s), 166,3 (s).

Ethyl (\boldsymbol{E})-3-(1-methyl-3,3'-biindolyl-2-yl)propenoate 13c. Yield 95%; mp 198-200 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.67 ; H, 6.02; N, 8.27. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\left.76.72 ; \mathrm{H}, 5.85 ; \mathrm{N}, 8.13 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3330,2921,1682,1609,1277,742,733 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.14(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{CH}_{2}\right), 6.59\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{H}_{\mathrm{eth}}\right), 7.07-7.12(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-$ $7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48-7.58(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.65\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{H}_{\mathrm{eth}}\right), 11.65(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 14.1(\mathrm{q}), 32.5(\mathrm{q}), 59.7(\mathrm{t}), 106.3(\mathrm{~s}), 110.1(\mathrm{~d})$, 111.4 (d), 114.4 (d), 116.1 (s), 119.3 (d), 119.5 (d), 120.6 (d), 121.6 (d), 124.6 (d), 127.1 (s), 127.4 (s), 129.0 (d), 130.0 (s), 133.3 (d), 136.8 (s), 137.8 (s), 166.4 (s).

Diethyl 3,3'-biindolyl-2-ylmethylenemalonate 14

A mixture of compound 11a ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$) and diethyl malonate $(0.091 \mu \mathrm{l}, 0.6 \mathrm{mmol})$ was heated in toluene at reflux during 5 h . After evaporation of toluene in vacuo, the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording $152 \mathrm{mg}(75 \%)$ of 14 as an orange solid; $\mathrm{mp} 160-162^{\circ} \mathrm{C}$ (Found: C, $71.54 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.87 . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $71.63 ; \mathrm{H}$, $5.51 ; \mathrm{N}, 6.96 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3425,2972,1689,1585,1202$, 741,$738 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.41(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{3}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2}\right), 4.44\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2}\right), 7.11$ $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{t}, J 8.0$, ArH), $7.32(1 \mathrm{H}, \mathrm{t}, J 2.4, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.45-$ $7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{d}, J 8.0$, ArH), $7.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{eth}}\right), 8.45(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 10.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$;
$\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.1(\mathrm{q}, 2 \mathrm{C}), 61.3(\mathrm{t}), 61.9(\mathrm{t}), 109.3(\mathrm{~s}), 111.4(\mathrm{~d})$, 112.1 (d), 118.1 (s), 120.3 (d), 120.4 (d), 120.6 (d), 122.2 (d), 122.8 (d), 124.6 (d), 126.4 (d), 127.4 (s), 128.8 (s), 135.5 (d), 136.4 (s), 138.2 (s), 166.4 (s), 168.3 (s); m/z 402 ($\mathrm{M}^{+}, 100 \%$), 286 (30\%), 257 (35%).

2-(2-Nitroethenyl)-3,3'-biindolyl 15

A mixture of $\mathrm{CH}_{3} \mathrm{NO}_{2}(5 \mathrm{ml})$, 11a ($260 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}(58 \mathrm{mg}, 0.75 \mathrm{mmol}$) was heated at reflux during 3 h . After evaporation in vacuo, the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording $245 \mathrm{mg}(81 \%)$ of $\mathbf{1 5}$ as brownish solid; mp 205-207 ${ }^{\circ} \mathrm{C}$ (Found: C, $70.63 ; \mathrm{H}, 4.81$; N, 13.67. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.81 ; \mathrm{H}, 4.95 ; \mathrm{N}, 13.76 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3399,3364,1588,1308,1292,1256,1203,746$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.05-7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.45-7.65(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.03(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.3, \mathrm{H}_{\text {eth }}\right), 8.09\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{H}_{\text {eth }}\right), 11.63(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.84$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\left.\delta_{\mathrm{C}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 106.7$ (s), 111.8 (d), 112.0 (d), 118.9 (d), 119.6 (d), 120.1 (d), 121.4 (d), 121.8 (d), 122.5 (s), 125.7 (d), 125.8 (s), 126.4 (s), 126.5 (d), 127.1 (s), 128.5 (d), 133.6 (d), 136.6 (s), 139.0 (s); $m / z 303$ ($\mathrm{M}^{+}, 100 \%$), 231 (24%).

3,3'-Biindolyl-2-carbaldehyde oxime 16

A solution of EtOH (2 ml) containing 11a ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{NaOAc}(82 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(69.5 \mathrm{mg}, 1 \mathrm{mmol})$ was heated at reflux during 1.5 h . After evaporation of EtOH in vacuo, the residue was chromatographed on a silica gel column [$99.5: 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},(\mathrm{v} / \mathrm{v})$] affording 65 mg of $(E)-16$ and $65 \mathrm{mg}(Z)-\mathbf{1 6}(95 \%)$.
(\boldsymbol{E})-3,3'-Biindolyl-2-carbaldehyde oxime 16. Mp $82-84^{\circ} \mathrm{C}$ (dec.) (Found: C, $74.24 ; \mathrm{H}, 4.78 ; \mathrm{N}, 15.12 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires C, $74.17 ; \mathrm{H}, 4.76 ; \mathrm{N}, 15.26 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3401,2919,1602$, $1451,1408,955,738 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.09-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.24$ $7.33(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{d}, J 8.2$, ArH), 7.62-7.68 (2 H, m, ArH), $8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.32(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 8.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 108.7$ (s), 111.2 (d), 111.4 (d), 120.2 (d), 120.3 (d), 120.4 (d), 121.2 (d), 122.7 (d), 123.7 (d), 124.8 (d), 126.8 (s), 127.5 (s), 128.2 (s), 136.4 (s), 137.0 (s), 142.8 (d); $m / z 275\left(\mathrm{M}^{+}, 100 \%\right), 257(54 \%)$.
(Z)-3,3'-Biindolyl-2-carbaldehyde oxime 16. Mp 108-110 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3401,2919,1610,1451,1409,914,738$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.11-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.27-7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.46-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.63 ($1 \mathrm{H}, \mathrm{d}, J$ 8.1, ArH), $7.66-7.70$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 10.12(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

5,8-Dihydroindolo[2,3-c]carbazole 17

A suspension of compound $15(182 \mathrm{mg}, 0.6 \mathrm{mmol})$ and Pd / C $(10 \mathrm{mg})$ in $\mathrm{Ph}_{2} \mathrm{O}(5 \mathrm{ml})$ was heated at $200^{\circ} \mathrm{C}$ for 12 h . After cooling, the solution was chromatographed on a silica gel column [$50: 50 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (v / v)] affording 47 mg (30\%) of 17; mp $155-157^{\circ} \mathrm{C}$ (dec.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3384,2923$, 2853, 1457, 1328, 737; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.31(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH})$, $7.44(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.61(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.65(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 8.73(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 11.48(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right]$ DMSO $) 110.2$ (d), 111.0 (d), 115.1 (s), 118.1 (d), 122.0 (s), 122.4 (d), 124.2 (d), 134.4 (s), 139.3 (s); m/z 256 ($\mathrm{M}^{+}, 100 \%$).

5,8-Dimethyl-5,8-dihydroindolo[2,3-c]carbazole 18 and $1,1^{\prime}$ -dimethyl-2-(2-nitroethenyl)-3,3'-biindolyl 19 from compound 11d A mixture of $\mathrm{CH}_{3} \mathrm{NO}_{2}(3 \mathrm{ml}), 11 \mathrm{~d}(144 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(19 \mathrm{mg}, 0.25 \mathrm{mmol}$) was heated at reflux during 48 h . After evaporation in vacuo, the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording $29 \mathrm{mg}(20 \%)$ of $\mathbf{1 9}$, $15 \mathrm{mg}(8 \%)$ of 18 and $100 \mathrm{mg}(69 \%)$ of starting material 11d.

5,8-Dimethyl-5,8-dihydroindolo[2,3-c]carbazole 18. Mp 240$244{ }^{\circ} \mathrm{C}$ (lit., ${ }^{21} \mathrm{mp} 257.6-258.2^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2925,1449$, 1320, 738; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 4.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.37(2 \mathrm{H}, \mathrm{t}, J 7.5$, ArH), 7.55 ($2 \mathrm{H}, \mathrm{t}, J 7.5$, ArH), 7.73 ($2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}$), 7.87 $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.79(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 29.3$ (q), 108.3 (d), 109.2 (d), 115.0 (s), 118.3 (d), 121.2 (s), 122.6 (d), 124.7 (d), 135.8 (s), 140.2 (s).

1,1'-Dimethyl-2-(2-nitroethenyl)-3,3'-biindolyl 19. Mp 195$197^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2922,1557,1318,738 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.07-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.28(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}$, $J 7.4, \mathrm{ArH}$), 7.56 ($1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}$), $7.60(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH})$, $7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.68(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{d}, J 14.0$, $\left.\mathrm{H}_{\text {eth }}\right), 8.21\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{H}_{\mathrm{eth}}\right)$.

Conversion of 1,1'-dimethyl-2-(2-nitroethenyl)-3,3'-biindolyl 19 to compound 18

A suspension of compound $\mathbf{1 9}(35 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(1 \mathrm{ml})$ was heated at $160^{\circ} \mathrm{C}$ during 3 h . After cooling, the solution was chromatographed on a silica gel column [50:50 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petrolum (v / v)] affording $16 \mathrm{mg}(58 \%)$ of $\mathbf{1 8} ; \mathrm{mp}$, IR, NMR spectral data were identical with the descriptions reported above.

Ethyl 5,8-dihydroindolo[2,3-c]carbazole-6-carboxylate 20a-c: general procedure
A suspension of compound 13a-c (0.5 mmol) in $\mathrm{Ph}_{2} \mathrm{O}(3 \mathrm{ml})$ was heated at $190-200^{\circ} \mathrm{C}$ during 24-72 h. After cooling, the solution was chromatographed on a silica gel column [75:25, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (v / v)] giving compound 20a-c.
Ethyl 5,8-dihydroindolo[2,3-c]carbazole-6-carboxylate 20a. Yield 78%; mp 240-242 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.65 ; H, 4.91 ; N, 8.38 . $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\left.76.81 ; \mathrm{H}, 4.91 ; \mathrm{N}, 8.53 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3401,2978,1672,1254,1202,741 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 1.48$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 4.53\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{2}\right), 7.37(2 \mathrm{H}, \mathrm{t}$, $J 7.4, \mathrm{ArH}$), 7.50 ($1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}$), 7.56 ($1 \mathrm{H}, \mathrm{t}, J 7.4$, $\mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.91(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.32$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.78(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.83(1 \mathrm{H}, \mathrm{d}, J 7.4$, $\mathrm{ArH}), 11.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) 11.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 14.3 (q), 60.6 (t), 109.8 (s), 111.3 (d), 111.4 (d), 112.3 (d), 116.5 (s), 118.7 (d), 118.9 (d), 120.1 (s), 121.0 (s), 121.1 (s), 122.4 (d), 123.6 (d), 125.0 (d), 126.4 (d), 133.5 (s), 133.6 (s), 139.7 (s), 141.2 (s), 166.4 (s); m/z 328 ($\mathrm{M}^{+}, 100 \%$), 282 (68%), 254 (37\%)
Ethyl 2,4-dichloro-5,8-dihydroindolo[2,3-c]carbazole-6-carboxylate 20b. Yield 50%; mp $244-246^{\circ} \mathrm{C}$ (Found: C, 63.39 ; H, 3.65; N, 6.94. $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 63.49; H, 3.55; N, $7.05 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3465,3318,2975,1692,1623,1273$, 1223,$767 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.45\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 4.44(2 \mathrm{H}$, $\left.\mathrm{q}, J 7.0, \mathrm{CH}_{2}\right), 7.34(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.54(1 \mathrm{H}, \mathrm{t}, J 7.4$, ArH), $7.59(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{ArH}), 7.63(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.16$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.33(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{d}, J 7.4$, ArH), $10.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 11.71(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 14.3 (q), 61.2 (t), 109.5 (s), 111.8 (d), 113.3 (d), 115.7 (s), 118.8 (s), 119.3 (d), 119.7 (d), 120.6 (s), 120.7 (s), 123.3 (d), 123.4 (s), 123.6 (d), 124.0 (s), 126.9 (d), 130.2 (s), 134.1 (s), 134.2 (s), 141.2 (s), 166.4 (s); m/z $400(10 \%), 398$ (61%), 396 ($\mathrm{M}^{+}, 100 \%$), 352 (33\%), 350 (61%).
Ethyl 5-methyl-5,8-dihydroindolo[2,3-c]carbazole-6-carboxylate 20c. Yield $30 \% ; \mathrm{mp} 180-182^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3348,2922$, 2852, 1686, 1621, 1267, 1206, 741; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right]$ DMSO $) 1.44(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.0, \mathrm{CH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.50\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{2}\right), 7.37$ ($1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}$), $7.44(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.55(1 \mathrm{H}, \mathrm{t}, J 7.4$, ArH), $7.60(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.68(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.77$ $(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.80-8.86(2 \mathrm{H}, \mathrm{m}$, ArH), 11.72 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\left.\delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 14.1$ (q), 33.6 (q), 61.1 (t), 109.9 (d), 111.4 (d), 111.8 (d), 114.4 (s), 118.2 (s), 118.7 (d), 119.3 (d), 121.0 (s), 121.3 (s), 122.5 (d), 123.4 (d), 125.5 (d), 126.0 (d), 133.5 (s), 140.8 (s), 141.6 (s), 167.4 (s); $m / z 342$ $\left(\mathrm{M}^{+}, 100 \%\right), 296(52 \%)$.

Preparation of ethyl 5,8-dihydroindolo[2,3-c]carbazole-6carboxylate 20a from compound 9a

Ethyl propiolate (2 ml) and $\mathbf{9 a}(116 \mathrm{mg}, 0.5 \mathrm{mmol})$ were heated at $120^{\circ} \mathrm{C}$ during 24 h . After evaporation in vacuo, the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording $37 \mathrm{mg}(23 \%)$ of 20a; mp, IR and NMR spectra data were identical with the descriptions reported above.

5,8-Dihydroindolo[2,3-c]carbazole-6-carboxylic acid 21

The ester $\mathbf{2 0 a}$ ($148 \mathrm{mg}, 0.45 \mathrm{mmol}$), EtOH (9 ml) and a solution of aq. $\mathrm{NaOH}(10 \%)(9 \mathrm{ml})$ were heated at reflux during 1 h . After cooling and acidification ($\mathrm{pH} 2-3$), the precipitate was collected affording $130 \mathrm{mg}(96 \%)$ of the yellow acid 21; mp $>250{ }^{\circ} \mathrm{C}$ (Found: C, 76.04; H, 4.03; N, 9.49. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $75.99 ; \mathrm{H}, 4.03 ; \mathrm{N}, 9.33 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3584$, $3395,1661,1623,1586,1415,1327,1219,740 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $7.37(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.55(1 \mathrm{H}, \mathrm{t}$, $J 7.4, \mathrm{ArH}$), 7.67 ($1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}$), 7.93 ($1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}$), $8.30(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.78(1 \mathrm{H}, \mathrm{d}, J 7.4, \operatorname{ArH}), 8.83(1 \mathrm{H}, \mathrm{d}, J 7.4$, $\mathrm{ArH}), 11.47$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $11.74(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $13.22(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 110.7$ (s), 111.4 (d), 111.9 (d), 112.3 (d), 116.3 (s), 118.6 (d), 118.8 (d), 119.7 (s), 121.1 (s), 121.2 (s), 122.3 (d), 123.5 (d), 124.3 (d), 126.2 (d), 133.5 (s), 133.8 (s), 139.6 (s), 141.1 (s), 168.2 (s).

3,3'-Biindolyl-2-carbonitrile 22 and 5,8-dihydropyrido[2,3-b: 5,4-b']diindole 23

A suspension of $\mathbf{1 6}(138 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(4 \mathrm{ml})$ was heated during 5 h at $190-200^{\circ} \mathrm{C}$. After cooling, the solution was chromatographed on a silica gel column [99: $1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$, (v / v)] affording $40 \mathrm{mg}(31 \%)$ of 22 and $65 \mathrm{mg}(51 \%)$ of $\mathbf{2 3}$.

3,3'-Biindolyl-2-carbonitrile 22. Mp 222-224 ${ }^{\circ} \mathrm{C}$ (Found: C, 79.26; $\mathrm{H}, 4.47 ; \mathrm{N}, 16.25 . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3}$ requires C, 79.36; H, 4.31; N , $16.33 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3378$, 2922, 2215, 1337, 1095, 745; $\left.\delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.09(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.15-7.24(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), 7.48-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.57 $(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.65-7.72(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 11.56(1 \mathrm{H}, \mathrm{s}$, NH), 12.34 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\left.\delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 103.0(\mathrm{~s}), 105.7$ (s), 111.9 (d), 112.3 (d), 115.2 (s), 119.2 (d), 119.4 (d), 120.6 (d), 121.1 (d), 121.6 (d), 121.8 (s), 124.7 (d), 125.0 (s), 125.7 (s), 125.8 (d), 136.4 (s), 137.2 (s).

5,8-Dihydropyrido[2,3-b:5,4-b'] diindole 23. $\mathrm{Mp}>250^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3383,2915,2841,1623,1415,1331,740$; $\left.\delta_{\mathrm{H}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.33-7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50(1 \mathrm{H}, \mathrm{t}, J 7.4$, ArH), 7.58-7.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.70(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.68$ ($1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}$), $8.77(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $\left.11.75(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.88(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 106.9$ (s), 111.1 (d), 111.9 (d), 118.8 (d), 118.9 (d), 120.1 (s), 120.3 (s), 122.1 (s), 122.9 (d), 123.9 (d), 125.1 (d), 127.3 (d), 131.1 (d), 131.5 (s), 138.2 (s), 140.8 (s), 145.8 (s); m/z 257 ($\mathrm{M}^{+}, 100 \%$).

Dimethyl 5,8-dihydroindolo[2,3-cc]arbazole-6,7-dicarboxylate 24 3, ${ }^{\prime}$-Biindolyl 9a ($2.32 \mathrm{~g}, 10 \mathrm{mmol}$) was heated together with dimethyl acetylenedicarboxylate (5 ml) during 2 h at $210^{\circ} \mathrm{C}$ under nitrogen atmosphere. TLC analysis showed the absence of 9 a and the excess of ester was removed under reduced pressure. The residue, chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent, gave $2.80 \mathrm{~g}(75 \%)$ of the title compound 24 as yellow crystals; mp 180-182 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.95 ; H, 4.41; N, 7.39. $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $70.96 ; \mathrm{H}, 4.33 ; \mathrm{N}, 7.52 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3464,3351,2953,1713,1618,1404,1212,1133,738 ;$ $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 4.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.42(2 \mathrm{H}, \mathrm{t}, J 8.1, \operatorname{ArH})$, $7.59(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.83(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.85(2 \mathrm{H}, \mathrm{d}$, $J 8.1, \mathrm{ArH}$), $\left.11.54(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 52.7(\mathrm{q}), 112.0$ (d), 112.2 (s), 118.9 (s), 119.3 (d), 120.6 (s), 123.2 (d), 126.5 (d), 131.7 (s), 141.1 (s), 167.1 (s); m/z 372 ($\mathrm{M}^{+}, 100 \%$), 341 (47%).

5,8-Dihydroindolo[2,3-c]carbazole-6,7-dicarboxylic acid 25

A suspension of compound $24(186 \mathrm{mg}, 0.5 \mathrm{mmol})$ in MeOH $(12 \mathrm{ml})$ and aqueous $\mathrm{KOH}(5 \mathrm{~m}, 5 \mathrm{ml})$ was heated during 90 min . After cooling and acidification ($\mathrm{pH} 2-3$), a precipitate appeared which was collected, affording $170 \mathrm{mg}(98 \%)$ of $\mathbf{2 5}$ as an orange solid; $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3587,3392,3199$, 1706, 1671, 1461, 1321, 1233, 1146, 728; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 7.37$ $(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.52(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.87(2 \mathrm{H}, \mathrm{d}, J 8.1$, $\mathrm{ArH}), 8.82(2 \mathrm{H}, \mathrm{d}, J \mathrm{8.1}, \mathrm{ArH}), 11.65(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 112.1$ (d), 114.8 (s), 118.1 (s), 118.8 (d), 120.6 (s), 123.0 (d), 125.8 (d), 133.2 (s), 140.6 (s), 169.2 (s).

Preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazole derivatives 28 using $\mathrm{Ph}_{2} \mathbf{O}$ as solvent (conditions A)

7-Methyl-6,7,8,9-tetrahydro-5 H -indolo[2,3-c] pyrrolo[3,4-a]-carbazole-6,8-dione 28aa. A suspension of compound 9a (0.5 mmol) and maleimide 27a $(0.6 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(3 \mathrm{ml})$ was heated at $190-200^{\circ} \mathrm{C}$ for 12 h . The solution was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 28aa; yield $42 \% ; \mathrm{mp}>250^{\circ} \mathrm{C}$ (Found: C, $74.18 ; \mathrm{H}, 3.80 ; \mathrm{N}, 11.89 . \mathrm{C}_{21}{ }^{-}$ $\mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $74.33 ; \mathrm{H}, 3.86 ; \mathrm{N}, 12.38 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3367, 2922, 2849, 1731, 1667, 1381, 1325, 1090, 736; $\delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{6}\right]-$ DMSO) $3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.42(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.59(2 \mathrm{H}$, $\mathrm{t}, J 8.1, \mathrm{ArH}$), $7.80(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.82(2 \mathrm{H}, \mathrm{d}, J 8.1$, $\left.\mathrm{ArH}), 12.05(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 23.5$ (q) 110.4 (s), 112.4 (d), 119.7 (d), 120.6 (s), 122.5 (s). 123.4 (d), 127.0 (d), 128.5 (s), 142.4 (s), 168.6 (s); m/z 339 ($\left.\mathrm{M}^{+}, 100 \%\right), 254$ (20\%).

7-Benzyl-6,7,8,9-tetrahydro-5H-indolo[2,3-c]pyrrolo[3,4-a]-carbazole-6,8-dione 28ab. A suspension of compound 9a $(0.5 \mathrm{mmol})$ and maleimide 27b $(0.6 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(3 \mathrm{ml})$ was heated at $190-200^{\circ} \mathrm{C}$ for 12 h . The solution was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 28ab; yield $69 \% ; \mathrm{mp}>250^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3403,2922,2850,1741$, 1691, 1682, 1613, 1461, 1325, 1224, 742; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 4.90$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.25-7.46(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.60(2 \mathrm{H}, \mathrm{t}, J 8.1$, ArH), 7.80 ($2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}$), 8.84 ($2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}$), 12.09 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\left.\delta_{\mathrm{C}}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 40.5$ (t), 110.1 (s), 112.4 (d), 119.8 (d), 120.6 (s), 122.8 (s), 123.5 (d), 127.2 (d), 127.3 (d), 128.5 (d), 128.6 (d), 128.7 (s), 137.5 (s), 142.5 (s), 168.2 (s); m/z 415 ($\mathrm{M}^{+}, 100 \%$), 254 (32%).

7-Benzyl-2,4-dichloro-6,7,8,9-tetrahydro-5 H -indolo[2,3-c]pyrrolo [3,4-a]carbazole-6,8-dione 28bb. A suspension of compound $9 \mathbf{b}(0.5 \mathrm{mmol})$ and maleimide $\mathbf{2 7 b}(0.6 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}$ (3 ml) was heated at $190-200^{\circ} \mathrm{C}$ during 24 h . Table 1. After cooling, $\mathrm{Et}_{2} \mathrm{O}$ was added and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give 28bb; yield 53%; mp $>250^{\circ} \mathrm{C}$ (Found: C, 67.09 ; H, 3.10; N, 8.57. $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 66.96; $\mathrm{H}, 3.12 ; \mathrm{N}, 8.68 \%)$; $v_{\max }\left({\mathrm{KBr}) / \mathrm{cm}^{-1} 3448 \text {, }}^{2}\right.$ 3378, 3060, 1752, 1681, 1399, 1281, 720; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $4.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.26-7.51(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63(1 \mathrm{H}, \mathrm{t}$, $J 8.1, \mathrm{ArH}), 7.81-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.66(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$, $8.69(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{ArH}), 11.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.28(1 \mathrm{H}, \mathrm{s}$, NH).
7-Benzyl-5-methyl-6,7,8,9-tetrahydro-5 H -indolo[2,3-c]-pyrrolo[3,4-a]carbazole-6,8-dione 28 cb . A suspension of compound $9 \mathbf{c}(0.5 \mathrm{mmol})$ and maleimide $27 \mathrm{~b}(0.6 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}$ $(3 \mathrm{ml})$ was heated at $190-200^{\circ} \mathrm{C}$ during 6 h . After cooling, $\mathrm{Et}_{2} \mathrm{O}$ was added and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give 28cb; yield $56 \% ; \mathrm{mp}>250^{\circ} \mathrm{C}$ (Found: C, 78.31; $\mathrm{H}, 4.44 ; \mathrm{N}, 9.78 . \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 78.31; $\mathrm{H}, 4.46$; $\mathrm{N}, 9.78 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3342,3031,2928,1737,1684,1609$, 1396, 1343, 1322, 739; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 4.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.90$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.26-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.49(1 \mathrm{H}, \mathrm{t}, J 8.1$, $\mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.79$ $(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.83(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.86(1 \mathrm{H}, \mathrm{d}$, $J 8.1, \mathrm{ArH}), 8.91(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z}$ 325 ($\mathrm{M}^{+}, 100 \%$), 278 (34%), 254 (23%).

7-Benzyl-5,9-dimethyl-6,7,8,9-tetrahydro-5H-indolo[2,3-c]-pyrrolo[3,4-a]carbazole-6,8-dione 28db. A suspension of compound $9 \mathbf{d}(0.5 \mathrm{mmol})$ and maleimide $27 \mathrm{~b}(0.6 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}$ (3 ml) was heated at $190-200^{\circ} \mathrm{C}$ during 12 h . After cooling, $\mathrm{Et}_{2} \mathrm{O}$ was added and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give 28db; yield $\mathrm{mp}>250^{\circ} \mathrm{C}$ (Found: C, 78.60 ; H, 4.84; N, 9.34. $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $78.54 ; \mathrm{H}, 4.77 ; \mathrm{N}, 9.47 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3051,2934,1744,1694,1589,1480,1393,1333$, $1128,737,698 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 7.25-7.39 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.50(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.56(2 \mathrm{H}, \mathrm{t}$, $J 7.3, \mathrm{ArH}), 8.62(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 34.2(\mathrm{q}), 41.5$ (t), 109.5 (d), 119.5 (d), 121.2 (s), 123.2 (s), 123.9 (d), 127.5 (d), 127.7 (d), 128.6 (d), 128.7 (d), 129.8 (s), 132.5 (s), 137.1 (s), 143.7 (s), 167.8 (s); $m / z 443\left(\mathrm{M}^{+}, 100 \%\right), 352(38 \%)$.

Preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazole derivatives

 28 using acetic acid as solvent (conditions B)7-Methyl-6,7,8,9-tetrahydro-5 H -indolo[2,3-c]pyrrolo[3,4-a]-carbazole-6,8-dione 28aa. A solution of $\mathrm{AcOH}(5 \mathrm{ml})$ containing compound $9 \mathbf{9 a}(0.5 \mathrm{mmol})$ and maleimide $\mathbf{2 7 a}(1 \mathrm{mmol})$ was heated at $90-100^{\circ} \mathrm{C}$ during 36 h . After evaporation, the residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound 28aa; yield 44%; mp, IR and NMR spectra data were identical with the descriptions reported above.

7-Benzyl-6,7,8,9-tetrahydro-5 H -indolo[2,3-c]pyrrolo[3,4-a]-carbazole-6,8-dione 28ab. A solution of $\mathrm{AcOH}(5 \mathrm{ml})$ containing compound 9a $(0.5 \mathrm{mmol})$ and maleimide 27b (1 mmol) was heated at $90-100^{\circ} \mathrm{C}$ during 24 h . After evaporation, the residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give compound 28ab; yield 55%; mp, IR and NMR spectra data were identical with the descriptions reported above.

6,7,8,9-Tetrahydro-5H-indolo[2,3-c]pyrrolo[3,4-a]carbazole-6,8-dione 28ac. A solution of $\mathrm{AcOH}(5 \mathrm{ml})$ containing compound $9 \mathbf{a}(0.5 \mathrm{mmol})$ and maleimide $27 \mathrm{c}(1 \mathrm{mmol})$ was heated at $90-100^{\circ} \mathrm{C}$ during 24 h . After evaporation, the residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to lead to compound 28ac; yield 55%; mp $>250{ }^{\circ} \mathrm{C}$ (Found: C, 73.65; H, 3.53; N, 12.82. $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 73.84; H, 3.41; N, 12.92\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3416$, $3351,3175,1742,1712,1688,1613,1461,1415,1312,1245,742$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.42(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.59(2 \mathrm{H}, \mathrm{t}, J 8.1$, $\mathrm{ArH}), 7.80(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.84(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 11.10$ $\left.(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.06(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 111.4(\mathrm{~s})$, 112.4 (d), 119.7 (d), 120.6 (s), 122.5 (s). 123.4 (d), 126.9 (d), 128.4 (s), 142.3 (s), 170.0 (s); $m / z 325$ ($\mathrm{M}^{+}, 100 \%$), 254 (45%).

2,4-Dichloro-6,7,8,9-tetrahydro-5H-indolo[2,3-c]pyrrolo-

[3,4-a]carbazole-6,8-dione 28bc. A solution of $\mathrm{AcOH}(5 \mathrm{ml})$ containing compound $9 \mathbf{b}(0.5 \mathrm{mmol})$ and maleimide 27 c (1 mmol) was heated at $90-100^{\circ} \mathrm{C}$ during 36 h . After evaporation, the residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to lead to compound 28bc; yield 41%; mp $>250^{\circ} \mathrm{C}$ (Found: C, 63.39; H, 3.65; N, 6.94 . $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 63.49; H, 3.55; N, 7.05%); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3416,3222,1749,1709,1613,1453,1314,1309$, 1272, 1237, 762, 642; $\left.\delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.45(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH})$, $7.61(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH}), 7.79(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{t}, J 7.7$, ArH), 8.59 ($1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH}$), 8.63 ($1 \mathrm{H}, \mathrm{s} \mathrm{ArH}$), $11.20(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 11.68$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 12.17 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

6,7,8,9-Tetrahydro-5 H -indolo[2,3-c] carbazole-6,7-dicarb-

oxylic anhydride 31. Similarly prepared as for compounds 28 using acetic acid as solvent and maleic anhydride (conditions B) during 2 days, yield $46 \% ; m p>250^{\circ} \mathrm{C}$ (Found: C, $73.01 ; \mathrm{H}$, 3.74; $\mathrm{N}, 8.10 . \mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $73.62 ; \mathrm{H}, 3.09 ; \mathrm{N}, 8.58 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3402,3361,3206,1808,1740,1715,1613,1460$, $1329,1208,737 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.44(2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}), 7.63$ ($2 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}$), 7.79 ($2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}$), 8.82 ($2 \mathrm{H}, \mathrm{d}, J 8.1$, ArH), $\left.12.38(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 109.2$ (s), 112.5 (d), 120.2 (d), 120.3 (s), 123.8 (d), 127.8 (d), 129.1 (s), 142.5 (s), 163.5 (s); m/z 326 ($\mathrm{M}^{+}, 100 \%$), 254 (38\%).

Diethyl (1,1'-dimethyl-3,3'-biindolyl-2-yl)hydrazine-1,2-dicarboxylate 32. A suspension of 9 d ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (3 ml) and diethyl azodicarboxylate ($115 \mu 1,0.6 \mathrm{mmol}$) was heated at $130^{\circ} \mathrm{C}$ under an inert atmosphere. After 1 h , the green-brown solution was evaporated and the residue, chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, gave $190 \mathrm{mg}(87 \%)$ of 32; $\mathrm{mp} 168-170^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3258,2984,2926,2909$, 1757, 1703, 1510, 1478, 1329, 1235, 1075, 739; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 1.10-1.30 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$), 3.75-4.30 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}+\mathrm{CH}_{3}\right), 7.01$ $(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), 7.26 ($1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH}$), 7.31-7.54 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 9.90 $\left.(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 13.7(\mathrm{q}), 14.3(\mathrm{q}), 29.2(\mathrm{q}), 32.5$ $(\mathrm{q}), 61.0(\mathrm{t}), 68.5(\mathrm{t}), 104.3(\mathrm{~s}), 105.5(\mathrm{~s}), 109.7(\mathrm{~d}), 110.1(\mathrm{~d})$, 118.5 (d), 119.3 (d), 119.6 (d), 120.2 (d), 121.0 (d), 122.2 (d),
125.3 (s), 127.2 (s), 128.1 (d), 132.1 (s), 134.1 (s), 136.7 (s) 154.5 (s), 156.3 (s); m/z 434 (M $\left.{ }^{+}, 100 \%\right), 346(46 \%), 272(23 \%), 259$ (17\%).

Acknowledgements

This work was supported by grants to E. D. from the Swedish Natural Science Research Council and the Wenner Gren Center Foundation for the Scientific Research. We also thank BASF, Ludwigshafen am Rhein (Germany), for a generous gift of dimethyl acetylenedicarboxylate.

References

1 J. T. Link, S. Raghavan, M. Gallant, S. Danishefsky, T. C. Chou and L. M. Ballas, J. Am. Chem. Soc., 1996, 118, 2825 and refs. therein.

2 Y. Yamashita, N. Fujii, C. Murkata, T. Ashizawa, M. Okabe and H. Nakano, Biochemistry, 1992, 31, 12069.

3 J. Bergman and B. Pelcman, J. Org. Chem., 1989, 54, 824.
4 G. W. Gribble and S. J. Berthel, Tetrahedron, 1992, 48, 8869.
5 M. Somei and A. Kadama, Heterocycles, 1992, 34, 1285.
6 U. Pindur, Y.-S. Kim and D. Schollmeyer, Heterocycles, 1994, 38, 2267.

7 J. F. Barry, T. W. Wallace and N. D. A. Walshe, Tetrahedron, 1995, 51, 12797.
8 S. M. Weinreb, R. S. Garigipati and J. A. Gainer, Heterocycles, 1984, 21, 309.
9 J. Bergman and B. Pelcman, Tetrahedron Lett., 1987, 28, 4441.
10 M. F. Margaret, A. S. Kevin and L. W. Leonard, Synthesis, 1995, 1511.

11 M. Ohkubo, T. Nishimura, H. Jona, T. Honna, S. Ito and H. Morishima, Tetrahedron, 1995, 53, 5937.

12 M. Gillner, B. Fernström, J.-Å. Gustafsson, J. Bergman and G. Cambillau, Chemosphere, 1986, 15, 1673.

13 U. Rannug, A. Rannug, U. Sjöberg, H. Li, R. Westerholm and J. Bergman, Chem. \& Biol., 1995, 2, 841.

14 J. Bergman, Tetrahedron, 1970, 26, 3353.
15 (a) A. Kistenmacher and K. Müller, J. Heterocycl. Chem., 1992, 29, 1237; (b) S. Hünig and H.-C. Steinmetzer, Liebigs Ann. Chem., 1976, 1090.

16 B. Robinson, J. Chem. Soc., 1963, 3067.
17 J. Lehman and U. Hartmann, Arch. Pharm., 1989, 322, 451.
18 A. R. Katritzky, J. Li and C. V. Stevens, J. Org. Chem., 1995, 60, 3401.
19 D. StC. Black, A. J. Ivory and N. Kumar, Tetrahedron, 1995, 51, 11801.

20 F. Mann and T. Willcox, J. Chem. Soc., 1958, 1525.
21 H. Weller and K. H. Grellmann, J. Am. Chem. Soc., 1983, 105, 6268.
22 J. Bergman and E. Desarbre, Synlett, 1997, 603.
23 J. Bergman, Acta Chim. Scand., 1971, 25, 1277.
24 U. Berens, J. M. Brown, J. Long and R. Selke, Tetrahedron: Asymmetry, 1996, 7, 285.
25 S. Hibino and E. Sugino, Adv. Nitrogen Heterocycl., 1995, 1, 205.
26 J. H. Cardinella, M. P. Kirkup, R. E. Moore, J. S. Mynderse, K. Seff and C. J. Simmons, Tetrahedron Lett., 1979, 20, 4915.
27 U. Pindur and R. Adam, Heterocycles, 1990, 31, 587.
28 S. Hibino, A. Tonari, T. Choshi and E. Sugino, Heterocycles, 1993, 35, 441.
29 S. G. Tilve, A. S. Tilve and V. G. Desai, Synth. Commun., 1996, 26, 1921.

30 S. Hibino, E. Sugino, T. Kuwada, N. Ogura, K. Sato and T. Choshi, J. Org. Chem., 1992, 57, 5917.

31 A. L. Germain, T. L. Gilchrist and P. D. Kemmitt, Heterocycles, 1994, 37, 697.
32 J. Bergman and R. Carlsson, Tetrahedron Lett., 1978, 19, 4055.
33 A. K. Mohanakrishnan and P. C. Srinivasan, J. Org. Chem., 1995, 60, 1939.
34 E. M. Beccalli, A. Marchesini and T. Pilati, Tetrahedron, 1993, 21, 4741.

35 T. Fujisawa and T. Sato, Org. Synth., 1987, 66, 121.
36 (a) R. L. Hudkins and J. L. Diebold, Tetrahedron Lett., 1997, 38, 915; (b) R. L. Hudkins, J. L. Diebold, T. S. Angeles and E. Knight, Jr., J. Med. Chem., 1997, 40, 2994.
37 J. Bergman, P. O. Norrby and P. Sand, Tetrahedron, 1990, 46, 6113.
38 T. Hino, K. Yamada and S. Akaboshi, Chem. Ind. (London), 1967, 275.

Paper 8/02852D
Received 16th April 1998
Accepted 23rd April 1998

